Classical simulations of Abelian-group normalizer circuits with intermediate measurements

نویسندگان

  • Juan Bermejo-Vega
  • Maarten Van den Nest
چکیده

Quantum normalizer circuits were recently introduced as generalizations of Clifford circuits [1]: a normalizer circuit over a finite Abelian group G is composed of the quantum Fourier transform (QFT) over G, together with gates which compute quadratic functions and automorphisms. In [1] it was shown that every normalizer circuit can be simulated efficiently classically. This result provides a nontrivial example of a family of quantum circuits that cannot yield exponential speed-ups in spite of usage of the QFT, the latter being a central quantum algorithmic primitive. Here we extend the aforementioned result in several ways. Most importantly, we show that normalizer circuits supplemented with intermediate measurements can also be simulated efficiently classically, even when the computation proceeds adaptively. This yields a generalization of the Gottesman-Knill theorem (valid for n-qubit Clifford operations [2, 3]) to quantum circuits described by arbitrary finite Abelian groups. Moreover, our simulations are twofold: we present efficient classical algorithms to sample the measurement probability distribution of any adaptive-normalizer computation, as well as to compute the amplitudes of the state vector in every step of it. Finally we develop a generalization of the stabilizer formalism [2, 3] relative to arbitrary finite Abelian groups: for example we characterize how to update stabilizers under generalized Pauli measurements and provide a normal form of the amplitudes of generalized stabilizer states using quadratic functions and subgroup cosets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient classical simulations of quantum fourier transforms and normalizer circuits over Abelian groups

The quantum Fourier transform (QFT) is an important ingredient in various quantum algorithms which achieve superpolynomial speed-ups over classical computers. In this paper we study under which conditions the QFT can be simulated efficiently classically. We introduce a class of quantum circuits, called normalizer circuits: a normalizer circuit over a finite Abelian group is any quantum circuit ...

متن کامل

Alternative Models for Quantum Computation

We propose and study two new computational models for quantum computation, and infer new insights about the circumstances that give quantum computers an advantage over classical ones. The bomb query complexity model is a variation on the query complexity model, inspired by the Elitzur-Vaidman bomb tester. In this model after each query to the black box the result is measured, and the algorithm ...

متن کامل

The computational power of normalizer circuits over black-box groups

This work presents a precise connection between Clifford circuits, Shor’s factoring algorithm and several other famous quantum algorithms with exponential quantum speed-ups for solving Abelian hidden subgroup problems. We show that all these different forms of quantum computation belong to a common new restricted model of quantum operations that we call black-box normalizer circuits. To define ...

متن کامل

Normalizer Circuits and Quantum Computation

In this thesis, we introduce new models of quantum computation to study the potential and limitations of quantum computer algorithms. Our models are based on algebraic extensions of the qubit Clifford gates (CNOT, Hadamard and π/4-phase gates) and Gottesman’s stabilizer formalism of quantum codes. We give two main kinds of technical contributions with applications in quantum algorithm design, c...

متن کامل

Normalizer circuits and a Gottesman-Knill theorem for infinite-dimensional systems

Normalizer circuits [1, 2] are generalized Clifford circuits that act on arbitrary finitedimensional systems Hd1 ⊗· · ·⊗Hdn with a standard basis labeled by the elements of a finite Abelian group G = Zd1 × · · · × Zdn . Normalizer gates implement operations associated with the group G and can be of three types: quantum Fourier transforms, group automorphism gates and quadratic phase gates. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Quantum Information & Computation

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014